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Abstract

Conventional cone jet algorithms arose from heuristic considerations of LO hard scattering cou-

pled to independent showering. These algorithms implicitly assume that the �nal states of individ-

ual events can be mapped onto a unique set of jets that are in turn associated with a unique set of

underlying hard scattering partons. Thus each �nal state hadron is assigned to a unique underly-

ing parton. The Jet Energy Flow (JEF) analysis described here does not make such assumptions.

The �nal states of individual events are instead described in terms of ow distributions of hadronic

energy. Quantities of physical interest are constructed from the energy ow distribution summed

over all events. The resulting analysis is less sensitive to higher order perturbative corrections and

the impact of showering and hadronization than the standard cone algorithms.

� Contribution to the P5 Working Group on QCD and Strong Interactions at Snowmass 2001
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A. Introduction

The goal of a jet algorithm is to provide a precise mapping between the observed, long

distance hadronic �nal states in high energy interactions and the underlying energetic par-

tons participating in the true short-distance, hard scattering process[1]. To appreciate this

goal imagine comparing the observed �nal states detected by \real" detectors that have

sizes of order centimeters to meters to what would be observed with a detector whose size

is characterized by a distance scale of a fraction of a fermi. Between these two scales,

i.e., from a fraction of a fermi to centimeters, the short-distance state evolves via higher

order perturbative processes and the physics associated with showering and hadronization.

These processes allow the short-distance partons, along with the spectators, to evolve into

the observed hadrons. During the evolution the 4-momentum associated with an initial

short-distance parton is spread out over a number of �nal state hadrons occupying an ex-

tended region of phase space. To achieve our stated goal, the jet algorithm tries to identify

these \related" hadrons into a single jet, whose total 4-momentum should track that of

the initial parton. To perform this task with precision it is important that the results of

applying the jet algorithm are insensitive to both higher order corrections and uctuations

in the showering/hadronization processes. The results of the jet algorithm should also be

insensitive to the smearing e�ects of the detection process itself, e.g., due to the granularity

of the detector.

Current jet algorithms attempt to achieve the stated goal in a quite singular way by

assigning the observed hadrons to unique jets on an event-by-event basis. This identi�cation

proceeds in the face of the fundamental fact that such a unique assignment cannot be precise.

While the underlying parton that initiates the jet is a nonsinglet under the color symmetry

of QCD, the hadrons are all color singlets. At the very least, the jets in the �nal state

must represent the correlated evolution of more than one short-distance parton or of a

short-distance parton correlated with a spectator parton, i.e., a color singlet set of initial

partons. In some sense the most extreme approach is represented by cone algorithms as

advocated at the 1990 Snowmass Workshop[2]. Cone algorithms associate hadrons into

jets by identifying those that are nearby in angle. The underlying assumption is that the

extra radiation produced by higher order corrections, showering and hadronization around

an energetic parton appears symmetrically, i.e., occurs independently of the other color
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charged objects in the �nal state. The alternative jet algorithm, the KT algorithm[3], uses

nearness in momentum space to identify the members of a jet and, at least to some extent,

recognizes the \color-connectedness" of the radiation producing the �nal state. However,

as noted above, both of these algorithms associate individual hadrons with unique jets on

an event-by-event basis. We know that this procedure is only an approximation (due to

the color conservation issue) and can lead to undesirable dependence (at least at the 10%

level) on the details of the showering and hadronization processes. In the context of cone

jet algorithms this latter point is discussed in more detail in another contribution to these

Proceedings[4].

The Jet Energy Flow (JEF) approach described in this note is a simpli�ed version of

the more completely developed C-continuous observables or C-algebra formalism of F. V.

Tkachov[5] for describing energy ow in hadronic collisions[6]. JEF accepts the reality

that the hadronic �nal state represents the collective radiation from several out-owing

color charges, i.e., the underlying short-distance partons. No attempt is made to associate

individual hadrons with unique jets, i.e., with unique underlying partons, on an event-

by-event basis. Yet the energy ow pattern of an event still provides a footprint of the

underlying partons, from which much of the same information provided by the standard

jet algorithms can be extracted. As the subsequent discussion will indicate, it is a more

reliable characterization of the event in the sense of exhibiting a reduced sensitivity to the

showering and hadronization processes. The challenge in the JEF type analysis is to de�ne

observables that o�er an informative comparison between theory and experiment.

B. The JEF Formalism

A primary strength of the JEF approach is that, in contrast with the usual algorithmic

approach to jet identi�cation, the JEF formalism generates, event-by-event, a smooth dis-

tribution to characterize each event. In that sense, the JEF formalism is more analytic. For

example, in the application of the cone algorithm the goal of identifying unique jets leads to

the \stability" constraint[4]. A set of hadrons or partons that lie within a cone of a de�ned

size R are identi�ed as constituting a jet if and only if the energy-weighted centroid of the

set of particles coincides with the geometric center of the cone. This constraint results

in the non-analytic structure of the implementation of the algorithm, typically in the form
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of step functions with complicated arguments. Only limited (and typically complicated)

regions of the multi-particle phase space contribute to a jet. No such constraint arises in

the JEF analysis. This distinction has several important consequences.

1. The more inclusive and analytic calculations characteristic of a JEF analysis are more

amenable to resummation techniques and power corrections analysis in perturbative

calculations.

2. Since the required multi-particle phase space integrations are largely unconstrained,

i.e., more analytic, they are easier (and faster) to implement. Programs like JETRAD

spend considerable computer time simulating the complicated phase space required by

the algorithmic style jet algorithms.

3. Since the analysis does not identify jets event-by-event, the analysis of the experimental

data from an individual event should proceed more quickly.

4. Signal to background optimization can now include the JEF parameters (and distri-

butions). One cannot typically optimize a standard jet algorithm except for a limited

number of parameters.

We can de�ne the fundamental distribution of the JEF analysis as follows. We start with

a set of 4-vectors, p� = (E; px; py; pz), that represent either the partons in a perturbative

calculation or the hadrons in a simulated or real event. In the latter case these 4-vectors

might correspond as well to the location and energy deposited in individual calorimeter

cells. If a given event corresponds to the measurement of N such 4-vectors,
�
pi�
	N
i=1

=n�
Ei;

�!
P i

�oN

i=1
, we have the 4-vector distribution for that event de�ned by

P�

� bP� = NX
i=1

pi�Æ
� bP �cP i

�
; (1)

where the directional unit vector is de�ned by bP (m) =
�!
P =

����!P ��� with the 2-dimensional

angular variable de�ned as m = (�; �) (typical of lepton colliders) or m = (�; �) (typical

of hadron colliders, where � is the pseudorapidity, � = ln (cot �=2)). This expression

de�nes the underlying energy ow via E (m) = P0 (m) with a corresponding expression

for the underlying longitudinal momentum ow Pz (m). For the case of hadronic colliders
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FIG. 1: Transverse energy (in GeV color coding) calorimeter readout in a typical CDF event as a

function of pseudorapidity and azimuthal angle. The reconstructed CDF cone jets are indicated

by the circles (with the same GeV color coding).

the more familiar underlying transverse energy ow is de�ned by the composite quantity

ET (m) =
q
P 2
x (m) + P 2

y (m) or ET (m) = E (m)� sin � (m). Clearly many quantities can

be constructed from the 4-momentum distribution of Eq. 1, including the usual cone jet

algorithm. The ET (�; �) distribution for a typical CDF jet event is illustrated in Figure 1

along with the cone jets \found" with the CDF cone jet algorithm.

Using the underlying 4-vector distribution we de�ne the jet energy ow (JEF) via a

smearing or averaging function A as

J� (m) �

Z
dm0 P� (m

0) � A (m0 �m) ; (2)

where A is normalized as Z
dm A (m) = 1: (3)

A simple (but not unique) form for the averaging function in terms of the general 2-tuple

of angular variables m = (�; �), which provides a direct comparison with the jet cone
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FIG. 2: The ET (�; �) ow (including the factor �R2) using the CDF event of Figure 1.

algorithm, is

A (m) = A (�; �) =
� (R � r (�; �))

�R2
=

�
�
R �

p
�2 + �2

�
�R2

; (4)

where R is the cone size and r (�; �) is the distance measure in the space de�ned by (�; �).

For comparison with the existing jet cone analyses we will discuss the case m = (�; �). As

a speci�c example we exhibit the jet transverse energy ow (transverse JEF)

JT (m) =

Z
dm0 ET (m

0) � A (m0 �m) =

Z
dm0

q
P 2
x (m

0) + P 2
y (m

0) � A (m0 �m)

(5)

times a factor of �R2 (ET = �R2 � JT ) for the case of R = 0:7 in Figure 2 and 3 for the

same event displayed in Figure 1. Clearly the same general structure is present in all three

�gures. Note that the transverse JEF is smeared on a scale R compared to the underlying

ET distribution of Figure 1. For comparison the Snowmass cone jet algorithm[2, 7] identi�es

jets at a discrete set of values of locations mj de�ned by the ET weighted cone \stability"

constraint. These stable cone locations mj are the solutions of the equationZ
dm0 ET (m

0) � (m0 �mj) � A (m0 �mj) = 0: (6)
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FIG. 3: Same as Figure 2 except that the maximum ET for the color coding is 15 GeV.

The corresponding cone jet ET values are found by evaluating Eq. 5 (times �R2) at the

jet positions, ET;j = �R2 � JT (mj). The non-analytic character of the jet cone algorithm

referred to earlier arises from the need to solve Eq. 6 and then work with only the discrete

set of solutions, i.e., the jets in an event.

C. Observables

We can now proceed to de�ne more general observables. The basic assumption of the JEF

approach is that event-by-event each value of the direction m is equally likely to correspond

to a jet with 4-momentum proportional to J� (m). Relative probabilities of observables

having values in a speci�ed range will correspond to the size of the area in m covered by the

JEF with the correct range of values. To illustrate these ideas, consider a general nth order

observable Cn represented by an nth order function of J� (m), C (J (m1) ; : : : ; J (mn)). The

corresponding event probability distribution, including the possibility of providing a set of
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angular cuts 
, is given by

P (Cn j
(mcut)) =

 
nY
i=1

Z
dmi

�R2

(mi �mcut)

!
Æ (Cn �C (J (m1) ; : : : ; J (mn))) (7)

/
d�JEF
dCn

;

where we have normalized the area to the \cone size" �R2. (Note that one might also

consider applying a cut directly on the J (m), e.g., J0 (m) > Ecut.) To determine the

di�erential cross section for the observable Cn from an experiment we simply sum over

events as

L
d�

dCn

=
X
events

P (Cn j
(mcut)) ; (8)

where L is the integrated luminosity. We obtain an event occupancy probability O by

integrating over the probability function

O (Cn (min) ; Cn (max)j
(mcut)) =

Z Cn(max)

Cn(min)

dCn P (Cn j
(mcut)) (9)

=

 
nY
i=1

Z
dmi

�R2

(mi �mcut)

!
�(Cn (max)�C (J (m1) ; : : : ; J (mn)))

��(C (J (m1) ; : : : ; J (mn))� Cn (min)) :

This �nal expression indicates that we are simply calculating the relative area inm for which

the JEF has the correct value to yield the desired value of the observable. We can then

count the number of events with e�ective occupancy number O and convert it into a cross

section,

L� (Cn (min) ; Cn (max)) =
X
events

O (Cn (min) ; Cn (max)j
(mcut)) : (10)

This formula can be used to construct bin values and the corresponding distribution. Let

us illustrate these ideas by considering some explicit examples.

1. The JEF jet massM (J (m)) = �R2�
p
J� (m)J� (m) is an example of a C1 observable

with a event probability distribution of the form

P (MJ ) =

Z
dm

�R2
Æ (MJ �M (J (m))) : (11)
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FIG. 4: The JEF jet invariant mass as de�ned in Eq. 11 for W boson decay in Higgs boson decay.

The corresponding occupancy probability has the form

O (MJ (min) ;MJ (max)) =

Z
dm

�R2
�(MJ (max)�M (J (m)))� (M (J (m))�MJ (min))

Thus the fraction of the events with a JEF jet with mass in the speci�ed range is pro-

portional to the fractional area in the m plane occupied by JEF jets with a mass value

in that range. To obtain the �nal distribution we sum over events. The (simulated)

JEF jet mass distribution for the W decay into hadrons (treated as a single jet) in the

process pp! H +X ! W+W� +X ! l� + hadrons +X is exhibited in Figure 4.

2. The JEF jet transverse energy ET in the variables appropriate to a hadron collider is

another C1 observable. The relative probability distribution for a CDF type rapidity

acceptance and CDF ET de�nition looks like

P (ET j
(0:1 < j�j < 0:7)) =
1

�R2

Z 0:7

0:1

d j�j

I
d�Æ (ET � E (J (�; �))� sin (� (�))) ;

(12)

where the JEF energy distribution is given by E (J (�; �)) = �R2 � J0 (�; �). As

suggested above, we can obtain the e�ective occupancy number of JEF jets (per event)

above an energy cut ET;min by integrating

O (ET;min j
(0:1 < j�j < 0:7)) =

Z
ET;min

dET P (ET j
(0:1 < j�j < 0:7)) : (13)
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FIG. 5: The ET probability function of Eq. 12 for the event of Figure 1: the left �gure is for a bin

width of 1 GeV and middle �gure is for a bin width of 5 GeV. The right �gure is the occupancy

number of Eq. 13. The individual data points corresponding to the 5 largest energy jets found by

the CDF cone jet algorithm and illustrated in Figure 1.

These quantities as evaluated for the sample jet event of Figure 1 are illustrated in

Figure 5. The jets found by the standard CDF cone jet algorithm are also indicated

as data points in the �gures and correlate well with the peaks in the JEF probability

distribution.

3. The JEF di-jet invariant mass M (J; J) is an example of a C2 observable with the

form M2 (J (m1) ; J (m2)) = (�R2)
2
� (J (m1) + J (m2))� (J (m1) + J (m2))

�, which

assumes that the two JEF jets are non-overlapping.. The corresponding probability

distribution is de�ned by

P
�
M2

JJ

�
=

ZZ
dm1dm2

(�R2)2
Æ
�
M2

JJ �M2 (J (m1) ; J (m2))
�
: (14)

D. An Example JEF Analysis

As an example of a JEF style analysis we briey review a JEF di-jet analysis performed

previously[8]. The goal is to calculate the di�erential transverse energy distribution of a

jet in the CDF central rapidity strip, 0:1 < j�j < 0:7, while requiring that a second jet with

transverse energy at least as large as one half of the transverse energy of the central jet,

ET;2 � ET;1=2, is tagged in a forward region, 1:2 < j�2j < 1:6. The corresponding di-JEF
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FIG. 6: Di�erential cross section of Eq. 16 for both JEF (moving cone) and EKS (�xed cone)

analysis at LO and NLO.

probability density function for an event obeying the appropriate cuts is expressed as

Pdi�jet (ET ) =
1

(�R2)2

ZZZZ
d�1d�1d�2d�2 
(0:1 < j�1j < 0:7)� 
(1:2 < j�2j < 1:6)

(15)

� 
(ET (J (�2; �2)) > ET (J (�1; �1)) =2)� Æ (ET �ET (J (�1; �1))) :

Using this probability function the desired di�erential cross section is obtained from Eq. 8

d�di�jet
dET

=
1

L

X
events

Pdi�jet (ET ) : (16)

The perturbative results for this cross section at LO and NLO for both the JEF analysis

of Eq. 16 and using the standard cone jet analysis of EKS[7] are exhibited in Figure 6

for the case R = 0:7. These results illustrate some of the desirable features of the JEF

approach. Note �rst that at smaller ET values both jet de�nitions yield similar results at

both LO and NLO. However, at larger ET values, where the boundaries of phase space

play are more relevant, the JEF result is larger than the \traditional" cone jet result and,

more importantly, is less sensitive to the higher order corrections. We can understand this

reduced sensitivity in terms of the smearing of the rapidity cuts in the JEF analysis. In the
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JEF analysis the underlying partons can violate the rapidity cuts by as much as R and still

contribute to a JEF style jet that respects the cut. For example, the parton contributing

to the secondary jet is only required to obey j�2j > 1:2�R = 0:5 in order to make a nonzero

contribution. In contrast, the traditional cone jet with a single parton inside requires the

parton to be collinear with the jet and thus in the current analysis receives contributions

only from j�2j > 1:2. This smearing of the details of the rapidity cuts explains both the

larger magnitude and the reduced dependence on higher orders of the JEF di-jet analysis.

We can expect a similarly reduced dependence on the stochastic e�ects of showering and

hadronization.

E. Concluding Remarks

We have discussed a di�erent approach to the jet analysis of hadronic states, the JEF

analysis, which follows from the earlier C-algebra formalism[5] and which di�ers from tradi-

tional algorithmic approaches in that unique jets are not identi�ed event-by-event. Instead

the analysis proceeds through the evaluation of Jet Energy Flow distributions. The brief

discussion presented here suggests that the JEF style analysis of hadronic �nal states in hard

scattering processes will provide observable measures of the underlying short-distance parton

structure that are less sensitive to higher order corrections and to showering/hadronization

corrections than more conventional jet algorithm analyses. Clearly much more needs to be

done in order to demonstrate and make use of this conclusion.
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